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Treatment planning and response assessment of radiotherapy (RT) has seen a dramatic increase in the usage of magnetic 

resonance imaging (MRI). The information that is gained from the high soft-tissue contrast MR images can be used, for instance, to 

improve the segmentation of regions of interest (ROIs) on the CT scan for treatment planning. However, the current practice of 

manual segmentation is subjective and time-consuming, particularly for patients who have head and neck cancer (HNC), and 

therefore, the development of reliable auto-segmentation algorithms for organs-at-risk (OARs) and radiation targets is required. 

New methodologies based on machine learning offer ample opportunities to solve this problem. 

 

My PhD project aimed to develop accurate and rapid auto-segmentation algorithms on MR images of HNC patients through the 

employment of established atlas-based algorithms and comparison of the results with deep learning-based methods. The work 

was divided into the design and implementation of auto-segmentation methods followed by extensive validation studies. For the 

latter, I developed a fully automated RT workflow that enabled validation on purely geometric features of the automatically 

generated contours and further analysis of the impact of geometric errors on key dosimetric features of a treatment plan. 

 

A common challenge in medical image segmentation is the limited availability of data due to the associated cost of obtaining expert 

contours. Moreover, frequent updates of imaging protocols or scanners may prevent algorithms that are developed on existing 

databases from working well on newly-acquired images. Therefore, I designed domain adaptation methods that leveraged large 

databases from related application domains (i.e. annotated CT images) to tackle this problem (i.e. the contouring of MR images). 

 

While both auto-segmentation strategies achieved clinically acceptable accuracies, atlas-based methods were slow and proved 

difficult to share between hospitals due to data-confidentiality issues. This is in contrast with deep-learning based models, where 

one can share a model which can be applied directly to new data without the need to share patient data. Additionally, deep learning 

methods can be used to alleviate the computational burden, as they generate contours within seconds. Moreover, in my study it 

was found that, when healthy tissue was infiltrated with irregular structures, deep learning was more accurate. 

 

In conclusion, I could demonstrate that auto-segmentation was feasible and could change clinical practice. Moreover, I could show 

that domain adaptation strategies held promise in the mitigation of problems with small datasets in medical imaging and in the 

elimination of the need to acquire new annotated datasets for each change in imaging protocols. 

 

The segmentation of OARs is essential for the treatment planning of RT. To minimise side effects, such as swallowing dysfunction 

or dry mouth, it is crucial to accurately localise these organs and take them into account during planning of the optimal 

configuration of beam intensities and arrangements.  

 

Conventional RT treatments rely on the use of a snapshot of the patient’s anatomy for the full treatment course of about six weeks 

(for HNC patients). This process neglects potential changes in the patient’s anatomy due to weight loss, tumour or organ shrinkage, 

and swelling. With the introduction of MRI-guided treatment systems, visualisation of the soft-tissue contrast is improved, which is 

crucial for many structures in the head and neck. 

 

Besides this visualisation advantage offered by MRI, and an extensive range of possible contrasts, it enables functional imaging 

which can be used to visualise surrogates, for instance for tumour metabolism, hypoxia, diffusion and perfusion.  

 



 

To utilise fully the promises of these techniques, automation of the workflow is crucial as the current practice of manual 

segmentation is time-consuming and tedious. Besides, there is generally no ground truth and segmentation is hence subject to 

substantial inter- and intra-observer variabilities. 

 

There were three main findings in my PhD: 1) we can use automated segmentation methods for the purposes of treatment 

planning; 2) we need to take dosimetry into account during evaluation of contours; and 3) we can use generative adversarial 

networks (GANs) to generate substantially larger training sets than was previously possible. I will discuss these findings in more 

detail in the following paragraphs. 

 

Following atlas-based and deep learning-based methods, I could demonstrate that it was feasible to segment OARs automatically 

with a geometric accuracy comparable to the measured inter-observer variability. However, atlas-based segmentation was not 

suitable for daily adaptations due to relatively long computation times. In addition to that, I found that it performed well for organs 

of similar shapes and locations for different patients, but could not cope when that was not the case.  

 

The computational burden of conventional auto-segmentation algorithms could be alleviated with deep learning-based methods, 

with prediction times in the order of seconds or even sub-seconds. Furthermore, deep learning-based methods are more flexible 

and can be used to segment ROIs that vary in shape and location, such as involved lymph nodes or tumour volumes. 

 

 
Segmentation examples: this figure provides four example cases for atlas- and  

deep learning-based auto-segmented left parotid (LP) and right parotid (RP) glands (orange:  

atlas-based, dark blue: deep learning-based, light blue: manual gold standard).  

Each row shows a typical example, whereas the columns illustrate the axial,  

sagittal and coronal cross-sections, respectively. 

 
Currently, auto-segmentation algorithms are commonly assessed by measures of volume overlaps or geometrical distances to a 

reference segmentation. However, for an application of auto-segmentation within an RT planning scenario, these geometric metrics 

are not necessarily meaningful. For example, a disagreement between manual and automated delineations in a region that 

undergoes a large dose gradient is likely to have a much more significant impact on an over-dosage to OARs or under-dosage to 

target volumes than in a region that only receives low doses. This emphasises the need for the establishment of additional, more 

meaningful evaluation metrics. I have demonstrated in my PhD that geometric measures alone are not sufficient to predict the 

impact of inaccurate segmentation on RT planning and that therefore the impact of segmentation errors on the planned dose 

distributions must be determined in order to evaluate thoroughly the auto-segmentation algorithms prior to their clinical 

implementation. 

 



 

 
Overview of the fully automated validation workflow to evaluate auto-segmentation  

algorithms in the context of RT. The highlighted part in orange shows the correlation analysis  

to determine whether a geometric evaluation suffices as a surrogate for key dosimetric  

features of a treatment plan. The top row illustrates an MR image, together with its gold  

standard and auto-segmented ROIs. To perform a dosimetric analysis, we registered the  

MR to its corresponding CT image via deformable image registration and used the resulting  

deformable vector field to warp the segmented ROIs from the MR to the CT. The central part  

of this figure shows the building blocks of the evaluation: the geometric and dosimetric  

evaluation, as well as the comparison with the inter-observer variability. 

 

 
Furthermore, I was able to show that GANs hold tremendous promise in overcoming limitations due to the data sparsity that is 

generally faced in medical imaging. GANs can help in the exploration and discovery of the underlying structure of training data and 

can learn to generate new images. These approaches can be used to augment the small annotated datasets that are typically 

available in medical imaging.  

 

 
 
Overview of the developed cross-modality learning method: in the first step (top row),  

synthetic MR images are generated through a generative adversarial network.  



 

The synthetic MR images are then fed into a 2D neural network, together with the  

annotations from the CT images (second row). In a third step, the trained network is  

applied to unseen real MR images (bottom row). 

 

I am convinced that adaptive RT will be one of the main driving forces for full automation of routine tasks in the clinical RT workflow 

in the near future, due to the necessity for full exploitation of a large quantity of imaging data. This will pave the way for automation, 

in particular of segmentation, in the general clinical RT workflow. 

 

While deep learning-based algorithms are still “black boxes” to a large degree, it is easy for a human observer to verify the resultant 

automated delineation. For these reasons, auto-segmentation could be implemented in the clinic now, as a starting point for 

clinicians who then have the possibility to edit the proposed contours. I believe that auto-segmentation will gradually replace 

manual delineation, as clinicians gain confidence in the technique by observing its results. This would allow them to focus on 

different tasks. 

 

Several vendors are already offering auto-segmentation algorithms in their commercial treatment planning systems with a recent 

trend towards deep learning-based methods. I believe that automated systems can reduce the number of human errors, improve 

consistency and create more time for other important tasks. 

 

A lack of delineated imaging data poses a problem for auto-segmentation methods for medical images. To perform well, most 

algorithms need a large amount of example imaging data. However, the receipt of annotated medical images is usually associated 

with a high cost, because the collection of large datasets of medical images is generally a time-consuming process. It involves the 

search for suitable data in large hospital systems with only moderately structured information and further processing (annotation) 

of the data by expert physicians. Patient consent is also required for use of the data. As a PhD student, I found it hard to obtain 

data from other institutes. I am grateful to the group of Professor Dave Fuller at the MD Anderson Cancer Center (Texas, USA) for 

helping me out with some of their datasets. I think it is essential that more hospitals share their data with each other to overcome 

this data problem. 

 

In addition to a general lack of data, subsequent MR images are likely to change in appearance due to changes in image acquisition 

parameters or updates of MR scanners. Hence, auto-segmentation approaches that are developed on an existing image database 

may not work well on newly acquired images. 

 

This lack of data was a recurrent theme in my PhD and, as I became aware that this was a common issue to varying degrees in 

medical imaging, I looked at solutions to this issue. 

 

A second challenge was that initially, no one else in my department was working on deep learning-based methods, so I had to find 

expertise outside my department. 

 

Yes, I am still in the field of radiotherapy. I am now working on a very exciting project at the Imaging Lab of Varian in Switzerland, 

where I can apply some knowledge of maths, physics and radiotherapy, and am learning many more new skills, such as writing 

high-quality code.  

 

I was working at the Institute of Cancer Research and the Royal Marsden Hospital in London, UK.  

 

My main supervisor was Professor Uwe Oelfke. I defended my thesis on the 5 September, 2019. It was a surprisingly pleasant 

experience as my examiners, Professor Coen Rasch and Professor David Hawkes, were both really interested in my work and we 

had very interesting discussions. At the end, I could not believe that four hours of discussion had gone by so quickly.  

 

Jennifer Kieselmann received her Bachelor of Science degree in 2012 (thesis in the field of theoretical particle physics) and her 

Master of Science degree in 2014 (thesis on applying methods from differential geometry to dose calculation), both in physics at 



 

the Heidelberg University in Germany. After a nine-month internship at the Imaging Lab (ILab) of Varian Medical Systems in Baden 

(Switzerland), she did a four-year PhD in London at the Institute of Cancer Research, working on “Novel concepts for automated 

segmentation to facilitate MRI-guided radiotherapy in head and neck cancer”. 

 
She is currently employed as a software development engineer at ILab. The results of her work have been or are currently in the 

progress of being published in high-impact journals and have been presented through oral communication at leading conferences. 
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