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Recent advances in technological aspects of radiotherapy have paved the way for personalised treatment as they enable the 

tailoring of radiation doses to individual patients. However, the current optimisation process is primarily focused on dose 

conformity without taking into account biological factors and it assumes uniform tumour responses to radiation [1].  

In medical oncology, genomic signatures have been incorporated into routine practice with tests such as MammaPrint, Oncotype 

DX, or PAM50. However, the use of such signatures in radiotherapy has been limited. Until now, there has been scarce information 

available regarding molecular predictive signatures in the field. For instance, the postoperative radiation therapy outcomes score 

(PORTOS) consists of 24 genes and is used to forecast the effectiveness of postoperative radiotherapy in prostate cancer [2]. 

Additionally, there are two other classifiers, which are known as the adjuvant radiotherapy intensification classifier (ARTIC) and the 

profile for the omission of local adjuvant radiotherapy (POLAR). These incorporate 27 and 16 genes respectively. These classifiers 

have been developed to predict outcomes of the use of postoperative radiotherapy in breast cancer [3,4]. 

In contrast to cancer-specific indicators such as these, an alternative measure known as the radiosensitivity index (RSI) has been 

proposed as a universal marker of cellular radiosensitivity that can be applied across various types of cancer [5]. The RSI is 

calculated based on the expression levels of ten specific genes (AR, c-JUN, STAT1, PKC, Rel A, cABL, SUMO1, CDK1, HDAC1 and IRF1), 

which are associated with DNA damage-response mechanisms such as cell-cycle regulation, apoptosis induction and proliferation 

modulation [5]. To enhance its practical applicability in clinical settings for radiotherapy planning purposes, the genomic-adjusted 

radiation dose (GARD) concept has been developed through the use of RSI values [6].  

As an initial validation step, GARD was evaluated in patient cohorts that had been diagnosed with breast, lung and pancreatic 

cancer, and glioblastoma [6]. Subsequent studies were conducted on a pooled, retrospective sample that encompassed multiple 

tumour variations. These studies produced new evidence that demonstrated comprehensively that GARD exhibited a strong 

correlation with key oncological outcomes, such as time until first recurrence and overall survival rates [7]. In another recent study, 

the use of GARD was explored to explain the outcomes observed in the Radiation Therapy Oncology Group (RTOG) 0617 trial [8]. 

This model was designed to determine an optimal radiation dose for each patient. In other research that utilised prospectively 

collected tissue, a correlation was found between low RSI values (which indicate higher radiosensitivity) and increased immune 

infiltration and activation [9]. Furthermore, a reanalysis of publicly available datasets demonstrated that RSI was associated with 

immune-related characteristics and could be used to predict responses to blockade therapy that was targeted at the programmed 

cell-death protein 1 (PD-1) [10-12]. In contrast, another analysis suggested that the application of RSI did not impact survival rates 

and should not be used to adjust radiation doses [13]. Instead, it has been proposed that evaluation of the tumour clones that 

remain after radiotherapy may provide better predictions regarding treatment outcomes [14]. 

Recent studies have furthered the integration of genomic signatures into radiotherapy decision-making (see Table 1). The European 

Organisation for Research and Treatment of Cancer has recognised the importance of RSI/GARD studies and has prioritised them 

for phase III clinical trials in radiotherapy [15]. A notable example of such an approach is the ongoing GARD-based trial, the aim of 

which is to optimise radiotherapy for triple-negative breast cancer (NCT05528133). Further evaluation is necessary to assess the 

clinical utility of these approaches by integrating molecular data into prospective clinical trials and routine practice. 

 

 

 

Table 1. Summary of clinical studies that have investigated the use of radiosensitivity-predicting genomic signatures (adapted 

from [16], with permission). Key: 95%CI – 95% confidence interval, HR – hazard ratio, sHR – sub-distribution hazard ratio. 

 

Study Cancer type Sample size Main findings 

Zhao et al., 2016 [2] Prostate cancer 526 patients (196 and 

330 in training and 

validation cohorts, 

respectively) 

24-gene predictor of 

response to 

postoperative 

radiotherapy. High 

about:blank


 

PORTOS score predicts 

a lower incidence of 

distant metastases in 

both training (HR 0.12, 

95% CI 0.03-0.41, 

p<0.0001) and 

validation (HR 0.15, 95% 

CI 0.04-0.60, p=0.002) 

cohorts. 

Tang et al., 2017 [17] Sarcomas 253 patients from The 

Cancer Genome Atlas 

(TCGA) 

26-gene radiosensitivity 

signature. Predicted 

radiosensitive patients 

had better overall 

survival than predicted 

non-radiosensitive 

patients (HR 0.07, 

p<0.001). 

Cui et al., 2018 [18] Breast cancer 948 and 1439 patients 

in training and 

validation cohorts, 

respectively (Molecular 

Taxonomy of Breast 

Cancer International 

Consortium)  

34-gene radiosensitivity 

signature. Patients 

administered 

radiotherapy had better 

disease-specific survival 

than did those who did 

not in the radiation-

sensitive group (HR 

0.68, p=0.059); a 

reverse effect was 

observed in the 

radiation-resistant 

group (HR 1.53, 

p=0.059).  

4-gene immune 

signature predictive of 

radiotherapy benefit. 

Patients who were 

administered 

radiotherapy had 

significantly better 

disease-specific survival 

in the immune-effective 

group (HR 0.46, 

p=0.0076), with no 

difference in disease-

specific survival in the 

immune-defective 

group (HR 1.27, p=0.16). 

Sjöström et al., 2019 [3] Breast cancer 748 patients from the 

Swedish breast cancer 

ARTIC comprised 27 

genes and patient age 

was prognostic for 



 

group 91 radiotherapy 

(SweBCG91-RT) trial 

locoregional recurrence 

in breast cancer 

patients who were 

administered 

radiotherapy (HR 3.4, 

95% CI 2.0-5.9, p<0.001) 

and was predictive of 

radiotherapy benefit 

(p=0.005). Patients with 

low ARTIC scores had a 

greater benefit from 

radiotherapy (HR 0.33, 

95% CI 0.21-0.52, 

p<0.001) than those 

with high ARTIC scores 

(HR 0.73, 95% CI 0.44-

1.2, p=0.23). 

Kim et al., 2020 [19] Head and neck 

squamous cell 

carcinomas that were 

negative for human 

papillomavirus 

203 patients from TCGA 

cohort 

Use of 41-gene 

radiosensitivity 

signature predicted 

reduced five-year 

recurrence-free survival 

in the radioresistant 

group versus the 

radiosensitive group 

(57.8% vs. 80.1%; 

p=0.035) 

Scott et al., 2021 [20] Various types (breast, 

head and neck, non-

small-cell lung, 

pancreatic and 

endometrial cancers, 

melanoma and glioma) 

1615 patients, of whom 

1298 (982 and 316 with 

and without 

radiotherapy, 

respectively) were 

assessed for time to 

first recurrence and 677 

(424 and 253 with and 

without radiotherapy, 

respectively) for overall 

survival 

GARD was associated 

with time to first 

recurrence (HR 0.98, 

95% CI 0.97-0.99, 

p=0.0017) and overall 

survival (HR 0.97, 95% 

CI 0.95-0.99, p=0.0007). 

The effect on overall 

survival was dependent 

on radiotherapy use 

(p=0.011). 

Feng et al., 2021 [21] Prostate cancer 486 of 760 patients 

randomised in NRG 

Oncology/RTOG 9601 

trial 

22-gene genomic 

classifier (Decipher 

Biosciences Inc) was 

associated with distant 

metastases (HR 1.17, 

95% CI 1.05-1.32, 

p=0.006), prostate 

cancer-specific 

mortality (HR 1.39, 95% 

CI 1.20-1.63, p<0.001) 

and overall survival (HR 

about:blank
about:blank
about:blank


 

1.17, 95% CI 1.06-1.29, 

p=0.002). 

Dal Pra et al., 2022 [22] Prostate cancer 226 of 350 patients 

randomised in the 

Swiss Group for Clinical 

Cancer Research (SAKK) 

09/10 trial 

22-gene genomic 

classifier (Decipher 

Biosciences Inc) was 

associated with 

biochemical 

progression (HR 2.26, 

95% CI 1.42-3.60, 

p<0.001), clinical 

progression (HR 2.29, 

95% CI 1.32-3.98, 

p=0.003) and use of 

hormone therapy (sHR 

2.99, 95% CI 1.55-5.76, 

p=0.001). Patients with 

high and low classifier 

scores had 45% and 

71% five-year freedom 

from biochemical 

progression, 

respectively. 

Wu et al., 2022 [23] Gliomas 1395 from Chinese 

Glioma Genome Atlas 

and TCGA 

12-gene radiosensitivity 

predictive index had 

better predictive 

capacity than the 

traditional World Health 

Organization 

classification system 

(concordance index: 

0.842 vs. 0.787, p≤2.2 × 

10−16). 

Sjöström et al., 2023 [4] Breast cancer 729 patients from the 

SweBCG91-RT trial and 

Princess Margaret 

Hospital 

16-gene POLAR 

signature used. POLAR 

low-risk patients did not 

benefit from the use of 

adjuvant radiotherapy 

(HR 1.1, 95% CI 0.39-

3.40, p=0.81; HR 1.5, 

95% CI 0.14-16, p=0.74). 

POLAR high-risk 

patients had a 

significantly lower risk 

of locoregional 

recurrence when 

radiotherapy was 

applied (HR 0.43, 95% 

CI 0.24-0.78, p=0.006; 

about:blank
about:blank


 

HR 0.25, 95% CI 0.07-

0.92, p=0.038). 

Spratt et al., 2023 [24] Prostate cancer 215 patients from NRG 

Oncology/RTOG 0126 

22-gene genomic 

classifier (Decipher 

Biosciences Inc) was 

independently 

prognostic for disease 

progression (sHR 1.12, 

95% CI 1.00-1.26, 

p=0.04), biochemical 

failure (sHR 1.22, 95% 

CI 1.10-1.37, p<0.001), 

distant metastasis (sHR 

1.28, 95% CI 1.06-1.55, 

p=0.01), and prostate 

cancer-specific 

mortality (sHR 1.45, 

95% CI 1.20-1.76, 

p<0.001). 
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